Many of us have been aghast at the pictures showing the vast plastic dump somewhere in the Pacific.
“…plastic is omnipresent. Plastic is cheap and easy to make and mold. We use this miracle polymer to store and transport food, make our clothes and cosmetics, cars and boats, detergents and fertilizers, transfuse our blood and floss our teeth. But it also takes between 20 to 500 years to break down a single piece of plastic in a landfill. Those bagged salad containers will be with us for generations to come.”
But rarely have we thought if our lives involve so much use of plastic, what if it is going through our bodies as well. This article highlights various research studies that show presence of microplastics in human bodies:
“Researchers recently found tiny plastic particles in the lungs of surgical patients, the blood of donors, and the placentas of unborn babies. We can breathe in polyethylene from our T-shirts because wastewater plants can’t fully filter them out. Microplastics are in our food—carried into the food chain by water or plankton—and in our toothpaste and dental floss.
When it comes to eating microplastics, scientists have documented plastic particles in about 40 percent of the human diet, including beer, honey, salt, and seafood. A graduate student in the United Kingdom collected mussels from different parts of the country and predicted that consumers ingest 70 microplastic particles for each 100 grams of mussels. Meanwhile, another study showed beer samples had about 28 particles per serving. People may be eating as much as a credit card’s worth of plastic each week—or more, because scientists still haven’t figured out how to reliably determine microplastic levels in meat, vegetables, grains, or packaged foods, which means we still don’t know how much plastic we actually eat.”
Surely presence of plastics in our body systems must be harmful to us?
“The good news, scientists say, is that the majority of microplastics don’t stick around—we exhale or excrete them. But Coffin and other researchers admit that they have no idea how much exactly that “majority” is—intestinal absorption is estimated to be around 0.3 percent, he says, though he also says that’s probably an underestimate. And some debris—especially long and skinny fibers—do end up in the deepest part of the lungs.
In March, 2022, a lab in the Netherlands published research that examined lung tissue from eight volunteers and found plastic fibers in 80 percent of them.”
But other research shows what harm they might be causing us:
“Scientists do know some of what happens when these particles enter the body, says Wagner. The body produces an inflammatory response, which happens when damaged cells release chemicals to isolate the foreign substance. This response can trigger oxidative stress. “Some papers suggest that actually, nanoplastics could interfere with the energy production and mitochondria and that might induce oxidative stress,” which essentially means that the body’s ability to repair damage in itself is thrown out of whack, he says. “But we’re really in the dark about how that happens.”
Particles that end up in our bloodstream or tissue first need to cross a physical barrier in the gut or in the lung, Wagner says. Animal studies show that if particles are small enough, they can pass through tissue and end up in the bloodstream or in other organs directly.15 “And then what happens after is not very well known,” says Wagner. “Does it get excreted? Is there some way of getting rid of those particles? There’s really not a lot of experimental work being done on that.”
Microplastics can also carry micropollutants into the body, says Andrey Rubin, a doctoral student at Tel Aviv University’s Porter School for Environmental Studies. Pesticides, drugs, hormones, even heavy metals can interact with and get absorbed by microplastics. Chemicals added to plastics really drive toxicity, and household exposures can come from unexpected places, Coffin says. “If you are eating microplastics that are shed from food safe materials, those chemicals are less likely to cause harm than inhaling microplastics from something that is never supposed to enter the human body, like fibers from rugs or furniture.” Additionally, a study published this April showed how waterborne germs can catch a ride on plastic particles and travel through the environment to find new hosts to sicken.”

If you want to read our other published material, please visit https://marcellus.in/blog/

Note: The above material is neither investment research, nor financial advice. Marcellus does not seek payment for or business from this publication in any shape or form. The information provided is intended for educational purposes only. Marcellus Investment Managers is regulated by the Securities and Exchange Board of India (SEBI) and is also an FME (Non-Retail) with the International Financial Services Centres Authority (IFSCA) as a provider of Portfolio Management Services. Additionally, Marcellus is also registered with US Securities and Exchange Commission (“US SEC”) as an Investment Advisor.



2024 © | All rights reserved.

Privacy Policy | Terms and Conditions