Nuclear fusion as a source of clean energy has become the last hope for climate change. The 3L&3S has been following developments in the area closely – see here and here. Indeed, this week was a time for celebrating mankind’s progress towards achieving it. American scientists achieved a net gain in their fusion reaction i.e, more energy was produced than used to cause the fusion, which has been widely acclaimed as a major breakthrough. It has taken decades since the idea was first contemplated to get here. Without undermining the magnanimity of the breakthrough, it is likely to take at least a decade if not decades more to commercialise the technology.
Here’s why:
“The laboratory uses the world’s largest and most powerful laser in an approach to fusion called inertial confinement. The technique relies on lasers that fire for a few billionths of a second to generate x-rays that compress and heat a tiny capsule of fuel about the size of a peppercorn. Eventually, the fuel, made up of heavy types of hydrogen called deuterium and tritium, gets hot and dense enough to form a plasma, and the hydrogen nuclei start slamming into each other, fusing and releasing energy.
While inertial confinement is the first fusion scheme to produce net energy gain, it’s not the most likely path forward for any possible commercial fusion efforts. Many fusion scientists think magnetic confinement—specifically a doughnut-shaped reactor called a tokamak—is a better option. Instead of lasers, tokamaks and other reactors using magnetic confinement rely on magnets to hold the fuel in place, and reach the intense conditions required for fusion using electric current and radio waves.
Because their technical approaches are so different, the net gain seen in the inertial confinement experiment doesn’t translate back to other approaches to fusion energy, like tokamaks. While both approaches aim to create plasma hot enough to fuel fusion, the physics and engineering that go into getting there differ between the various concepts, says White.”
What next?
“The next step for fusion after reaching net gain, White says, is to produce much more energy than what’s supplied, instead of just a bit more. This is especially important in inertial confinement approaches because lasers aren’t very efficient, so they take more energy from the grid than they provide to the fusion reactor. So while within the reactor there was net energy gain, in reality producing that 3.15 megajoules took about 300 megajoules from the grid.
More efficient laser technology has been developed since the lasers for NIF were designed, and researchers also see a path to producing hundreds of megajoules of energy in reactions instead of just a few, said Lawrence Livermore director Kim Budil in a press conference following the announcement.
Building reactors that can reliably and repeatedly produce a significant amount of energy won’t be a trivial task, and we’re still many big announcements away from seeing fusion energy in commercial applications.”
If you want to read our other published material, please visit https://marcellus.in/blog/
Note: The above material is neither investment research, nor financial advice. Marcellus does not seek payment for or business from this publication in any shape or form. The information provided is intended for educational purposes only. Marcellus Investment Managers is regulated by the Securities and Exchange Board of India (SEBI) and is also an FME (Non-Retail) with the International Financial Services Centres Authority (IFSCA) as a provider of Portfolio Management Services. Additionally, Marcellus is also registered with US Securities and Exchange Commission (“US SEC”) as an Investment Advisor.