The football world cup is not known as the greatest show on the planet for no reason. It is indeed the beautiful game and most watched sport globally. The tournament has taken off with much excitement what with Argentina, Germany and Belgium facing upset defeats, enough to drown the initial controversy around the event’s hosts. But the most exciting part of this world cup has been the use of technology, especially the ball tracking system which helps referees make calls, especially offside calls more accurately and fairly. So, what exactly is this technology?

“Within every match ball is a device designed by KINEXON, a major player in the performance-tracking world across several sports. Per the company, this device weighs 14 grams (just under 0.5 ounces), and actually houses two separate sensors operating simultaneously:

  • Ultra-wideband (UWB) sensor: A type of technology that’s superior to GPS or Bluetooth for precise positional data, plus can transmit data in real time to constantly track the ball’s position.
  • Inertial measurement unit (IMU) sensor: A sensor meant to detect nuanced movements of an object in space.

“While the ultra-wideband helps me to have the position of an object, the IMU gives me the granular movement in three dimensions,” said Maximillian Schmidt, co-founder and managing director of KINEXON.

So, any time the ball is kicked, headed, thrown or even so much as tapped, the system picks it up at 500 frames per second. Data is sent in real time from sensors to a local positioning system (LPS), which involves a setup of network antennas installed around the playing field that take in and store the data for immediate use. When a ball flies out of bounds during the course of play, and a new ball is thrown or kicked in to replace it, KINEXON’s backend system automatically switches to the new ball’s data input without the need for human intervention.

KINEXON’s in-ball device is supported by suspension technology provided by Adidas, designed to house the sensor at the central interior point of the ball and keep it secure in a consistent location.

Paired with this ball sensor is optical camera tracking from Hawk-Eye, a system well known for its work in tennis. Twelve Hawk-Eye cameras are set up around the stadium, tracking both the ball itself and each player 50 times per second. Twenty-nine separate points of the body are tracked for players, including limbs.
When combined, these two data sources allow for offside decisions that are not just highly accurate, but also available much faster than in the past – a major priority for FIFA in this World Cup cycle.
 data from both KINEXON and Hawk-Eye is run through artificial intelligence software that’s programmed to generate automated offside alerts to officials in the match’s video room. Instead of manually combing through plays, a time-consuming process, AI programs auto-generate alerts that can then be confirmed by video match officials.

The software also generates 3D renderings of the spatial data, which will be overlaid onto TV broadcasts and in-stadium monitors to give fans a direct look at how each reviewed call was decided.”

For the technologically inclined, the article delves deeper into the accuracy, testing and various other exciting applications of the technology, including better virtual experiences for fans.

If you want to read our other published material, please visit

Note: the above material is neither investment research, nor financial advice. Marcellus does not seek payment for or business from this publication in any shape or form. Marcellus Investment Managers is regulated by the Securities and Exchange Board of India as a provider of Portfolio Management Services. Marcellus Investment Managers is also regulated in the United States as an Investment Advisor.

Copyright © 2022 Marcellus Investment Managers Pvt Ltd, All rights reserved.

2024 © | All rights reserved.

Privacy Policy | Terms and Conditions