One of the most visibly positive results of the proliferation of AI is the manner in which it is helping us humans decode the languages of animals. Sperm whales are the latest species to have their language decoded by various groups of scientists in Europe and America thanks to AI. As Katherine Latham and Anna Bressanin of the BBC explain, sperm whales are particularly difficult to study because they spend most of their time deep underwater: “They are capable of diving over 3km (10,000ft) and can hold their breath for two hours.”

They are also mysterious because they move very slowly and yet manage to hunt down species who move much faster then them: “…exactly how sperm whales catch squid, like many other areas of their lives, remains a mystery. “They’re slow swimmers,” says Kirsten Young, a marine scientist at the University of Exeter. Squid, on the other hand, are fast. “How can [sperm whales] catch squid if they can only move at 3 knots [5.5 km/h or 3.5mph]? Are the squid moving really slowly? Or are the whales stunning them with their vocalisations? What happens down there? Nobody really knows,” she says.”

As a result, the AI driven breakthroughs in understanding sperm whales’ communication could herald major breakthroughs in demystifying these creatures of the deep. The Cetacean Translation Initiative (Ceti) arose in the City University of New York: “In 2005, Shane Gero, biology lead for Ceti, founded The Dominica Sperm Whale Project to study the social and vocal behaviour of around 400 sperm whales that live in the Eastern Caribbean. Almost 20 years – and thousands of hours of observation – later, the researchers have discovered intricacies in whale vocalisations never before observed, revealing structures within sperm whale communication akin to human language.

Sperm whales live in multi-level, matrilineal societies – groups of daughters, mothers and grandmothers – while the males roam the oceans, visiting the groups to breed. They are known for their complex social behaviour and group decision-making, which requires sophisticated communication. For example, they are able to adapt their behaviour as a group when protecting themselves from predators like orcas or humans.

Sperm whales communicate with each other using rhythmic sequences of clicks, called codas. It was previously thought that sperm whales had just 21 coda types. However, after studying almost 9,000 recordings, the Ceti researchers identified 156 distinct codas. They also noticed the basic building blocks of these codas which they describe as a “sperm whale phonetic alphabet” – much like phonemes, the units of sound in human language which combine to form words.” [The BBC article contains a terrific video on how sperm whales use clicks to communicate with each other and for hunting.]

Further insights on sperm whale communication have come from a PhD student at MIT: “Pratyusha Sharma, a PhD student at MIT and lead author of the study, describes the “fine-grain changes” in vocalisations the AI identified. Each coda consists of between three and 40 rapid-fire clicks. The sperm whales were found to vary the overall speed, or the “tempo”, of the codas, as well as to speed up and slow down during the delivery of a coda, in other words, making it “rubato”. Sometimes they added an extra click at the end of a coda, akin, says Sharma, to “ornamentation” in music. These subtle variations, she says, suggest sperm whale vocalisations could carry a much richer amount of information than previously thought.

“Some of these features are contextual,” says Sharma. “In human language, for example, I can say ‘what’ or ‘whaaaat!?’. It’s the same word, but to understand the meaning you have to listen to the whole sound,” she says.

The researchers also found the sperm whale “phonemes” could be used in a combinatorial fashion, allowing the whales to construct a vast repertoire of distinct vocalisations. The existence of a combinatorial coding system, write the report authors, is a prerequisite for “duality of patterning” – a linguistic phenomenon thought to be unique to human language – in which meaningless elements combine to form meaningful words….

“What we show in sperm whales is that the codas themselves are formed by combining from this basic set of features. Then the codas get sequenced together to form coda sequences.” Much like humans combine phonemes to create words, and then words to create sentences.”

Inspite of all of these insights, it is still early days in our understanding of sperm whales. We don’t yet know whether these are intelligent creatures who can reason or store or share information. All we have been able to do so far is gather a few pieces of a real-world jigsaw puzzle.

If you want to read our other published material, please visit https://marcellus.in/blog/

Note: The above material is neither investment research, nor financial advice. Marcellus does not seek payment for or business from this publication in any shape or form. The information provided is intended for educational purposes only. Marcellus Investment Managers is regulated by the Securities and Exchange Board of India (SEBI) and is also an FME (Non-Retail) with the International Financial Services Centres Authority (IFSCA) as a provider of Portfolio Management Services. Additionally, Marcellus is also registered with US Securities and Exchange Commission (“US SEC”) as an Investment Advisor.



2024 © | All rights reserved.

Privacy Policy | Terms and Conditions