In last week’s edition of 3 Longs & 3 Shorts, we had a piece which delved into the physics of the tragic stampede in Seoul three weeks ago (see https://www.wired.com/story/
The piece begins by giving you a sense of the scale at which the NY marathon operates: “The first thing Ted Metellus did when the 2021 New York City Marathon wrapped up…was to start planning for this year’s race. “It’s on my mind all the time,” says Metellus, the race director and vice president of the New York Road Runners (NYRR), which puts on the race. …the marathon is a complex negotiation of time, space, and people. “It is one of the single largest mobilizations of resources in the city,” says Metellus.
By sheer numbers, it is impressive. Last year, even with a reduced pandemic field of more than 21,000 runners, some 41,240 gallons of Poland Spring water—and 1.4 million paper cups—were dispensed to runners on course (in addition to the 45,000-plus bottles given out at the start); along with 30,000 Honey Stinger gels. Some 122,760 pounds of clothing was shed by the runners at the start… This year, the marathon is back at full strength, with more than 50,000 participants expected…”
Then we are introduced to the mastermind who plans the whole thing using science & maths: “The job of understanding how that small city’s worth of people will travel the 26.2 miles from Staten Island to Central Park—and to ensure it happens with as little friction as possible—falls largely to Marcel Altenburg, a senior lecturer in crowd science at the Manchester Metropolitan University. Born in Germany, and a former Captain in the Bundeswehr, Altenburg went to Manchester to pursue a degree in crowd science, a discipline, he notes, that got its real start in 1989 with the infamous Hillsborough Stadium disaster, when 97 people were killed in a crush caused by overcrowding. He stayed on and became a lecturer.
Since then, he’s been involved with numerous high-profile events, from presidential inaugurations to rock concerts to football championships to, most recently, managing the massive crowds that queued to pay respect to Queen Elizabeth. And, of course, any number of marathons, from Berlin to Chicago. In 2016, he began working with the NYRR on the world’s largest race…”
So how does Marcel Altenburg ensure a mishap free event year after year? The article says that the first big thing he has to get right is the start of the race: “The starting process is itself massive: It will easily take longer to dispense the five waves of runners, in 15 “corrals,” across three starting points, than it will take the best runners to complete the race (it takes 18 minutes, less than a pro can run a 5K, just to dispense each group). And the start, from a planning perspective, is everything. “It is the last moment we can influence the race,” he says. “It’s the last time someone listens to you—the last time we can tell them, stay right, wait for a second. From then on, the race is on them.”
It’s a bit like a water tap. You can control the source, but once the water is flowing, you cannot easily call it back. When he started working with the Road Runners, he had a revelation. “We were convinced that the way we start impacts everything on the course,” Altenburg says. “That everything on the course is of our own making.”
Once you had accurately modeled the start, you could predict, with unprecedented accuracy, everything that happened afterwards. After backwards engineering previous years’ data, Altenburg advised that changing to 15 corrals, from 12, would allow better control.”
Once the start is taken care off, Altenburgh switches his mind to modelling the finish of the race because that is another high risk area: “Breaking the race up into five minute windows, Altenburg projected that the largest finishing wave would consist of 1,366 runners. There were 1,367. “I know who the guy was,” Altenburg says, laughing. “He was from Mexico.” But his overall estimate was 99.93 percent accurate. The code had been cracked, his “Start Right” predictive algorithm born. Now, any contingency that might arrive—even a global pandemic that suddenly required six-foot social distancing—could be modeled.”
Finally, the focus shifts to assessing risks that can kick in between the start and the finish. This requires complex modelling using lots of data: “Marathons, in effect, cannot be understood as a system. Armed with huge amounts of computing power, data from previous races, and a hope that people more or less run at the pace they have said they are going to run, Altenburg needs to calculate every single runner. “The ideal experience is that I see the same 100 people throughout most of my race,” he says. “The organizer is going to great lengths to minimize the number of overtakes on the course.”
Being constantly overtaken, or by contrast constantly having to “zig-zag” past groups of other runners, is not only stressful, he says, but can be unsafe (the algorithms provide for an ideal of three square meters for each runner, a number that was briefly increased during the era of social distancing). The professional field, says Altenburg, will “immediately stretch,” while runners further back may spend more time together. But people are not data points, they will do the unexpected.”
If you want to read our other published material, please visit https://marcellus.in/blog/
Note: The above material is neither investment research, nor financial advice. Marcellus does not seek payment for or business from this publication in any shape or form. The information provided is intended for educational purposes only. Marcellus Investment Managers is regulated by the Securities and Exchange Board of India (SEBI) and is also an FME (Non-Retail) with the International Financial Services Centres Authority (IFSCA) as a provider of Portfolio Management Services. Additionally, Marcellus is also registered with US Securities and Exchange Commission (“US SEC”) as an Investment Advisor.