Whilst the functioning of the human body is generally similar across all individuals, there are specific differences which makes each of one of us unique. Particularly, in terms of how our bodies react to various treatments – surgical or medical. Therefore, research based on generic clinical trials might work at a population level in terms of safety and efficacy but not necessarily at an individual level. To that extent, scientists have been working on developing replicas of our individual selves in particular, critical organs to allow healthcare practitioners to figure out the best course of action suited to our unique selves. Such replicas are referred to as digital twins.

“These “digital twins” are the same size and shape as the real thing. They work in the same way. But they exist only virtually. Scientists can do virtual surgery on these virtual hearts, figuring out the best course of action for a patient’s condition.

After decades of research, models like these are now entering clinical trials and starting to be used for patient care. Virtual replicas of many other organs are also being developed. Engineers are working on digital twins of people’s brains, guts, livers, nervous systems, and more. They’re creating virtual replicas of people’s faces, which could be used to try out surgeries or analyze facial features, and testing drugs on digital cancers. The eventual goal is to create digital versions of our bodies—computer copies that could help researchers and doctors figure out our risk of developing various diseases and determine which treatments might work best. They’d be our own personal guinea pigs for testing out medicines before we subject our real bodies to them.

To engineers like Niederer, it’s a tantalizing prospect very much within reach. Several pilot studies have been completed, and larger trials are underway. Those in the field expect digital twins based on organs to become a part of clinical care within the next five to 10 years, aiding diagnosis and surgical decision-making. Further down the line, we’ll even be able to run clinical trials on synthetic patients—virtual bodies created using real data.”

The article tells us about the fascinating process of building a digital twin:

“We can think of a digital twin as having three separate components, says El-Bouri, a biomedical engineer at the University of Liverpool in the UK. The first is the thing being modeled. That might be a jet engine or a bridge, or it could be a person’s heart. Essentially, it’s what we want to test or study.
The second component is the digital replica of that object, which can be created by taking lots of measurements from the real thing and entering them into a computer. For a heart, that might mean blood pressure recordings as well as MRI and CT scans. The third is new data that’s fed into the model. A true digital twin should be updated in real time—for example, with information collected from wearable sensors, if it’s a model of someone’s heart.”

Of all the organs, much work seems to be done on creating a digital twin of the heart for obvious reasons – it is perhaps the organ responsible for most illnesses and from an engineering perspective, functions as a pump which engineers are familiar with.

“At his lab on the campus of Hammersmith Hospital in London, Niederer has also been building virtual hearts. He is exploring whether his models could be used to find the best place to implant pacemakers. His approach is similar to Trayanova’s, but his models also incorporate ECG data from patients. These recordings give a sense of how electrical pulses pass through the heart tissue, he says.

So far, Niederer and his colleagues have published a small trial in which models of 10 patients’ hearts were evaluated by doctors but not used to inform surgical decisions. Still, Niederer is already getting requests from device manufacturers to run virtual tests of their products. A couple have asked him to choose places where their battery-operated pacemaker devices can sit without bumping into heart tissue, he says. Not only can Niederer and his colleagues run this test virtually, but they can do it for hearts of various different sizes. The team can test the device in hundreds of potential locations, within hundreds of different virtual hearts. “And we can do it in a week,” he adds.

This is an example of what scientists call “in silico trials”—clinical trials run on a computer.” 

Whilst the benefits of digital twins are apparent, the article goes on to highlight potential risks including data privacy and patient autonomy.

If you want to read our other published material, please visit https://marcellus.in/blog/

Note: The above material is neither investment research, nor financial advice. Marcellus does not seek payment for or business from this publication in any shape or form. The information provided is intended for educational purposes only. Marcellus Investment Managers is regulated by the Securities and Exchange Board of India (SEBI) and is also an FME (Non-Retail) with the International Financial Services Centres Authority (IFSCA) as a provider of Portfolio Management Services. Additionally, Marcellus is also registered with US Securities and Exchange Commission (“US SEC”) as an Investment Advisor.



2025 © | All rights reserved.

Privacy Policy | Terms and Conditions