Three Longs & Three Shorts

Immunology Is Where Intuition Goes to Die

Ed Yong has been putting out some really well researched pieces through the pandemic on complex matters of science but explained in a way that all of us can understand. In this piece, he writes about the human immune system, a subject of prime concern for those of us who are hoping against hope for a miraculous vaccine in record quick time than what science holds is practical. He adopts the fascinating tone of a war story and likens the inherently complex human immune system to any other natural fight where the first and instant response to an invasion is a generic defence mustering might and speed than precision, later morphing into a more specialist attack as we understand our invader better. He then adds the complexities and deviations from this norm which has made handling of this pandemic and the development of a vaccine that much more challenging. And why even if the vaccine is developed, its efficacy in terms of providing long lasting immunity is not certain. Whilst Ed ends up quashing our hopes, he does leave us fascinated about the human immune system. He quotes Akiko Iwasaki, an immunologist from Yale: “It’s a complicated system,…I think it’s beautiful.”
“…the immune system is very complicated. Arguably the most complex part of the human body outside the brain, it’s an absurdly intricate network of cells and molecules that protect us from dangerous viruses and other microbes. 
Even the word immunity creates confusion. When immunologists use it, they simply mean that the immune system has responded to a pathogen—for example, by producing antibodies or mustering defensive cells. When everyone else uses the term, they mean (and hope) that they are protected from infection—that they are immune. But, annoyingly, an immune response doesn’t necessarily provide immunity in this colloquial sense. It all depends on how effective, numerous, and durable those antibodies and cells are.
….The first of three phases involves detecting a threat, summoning help, and launching the counterattack. It begins as soon as a virus drifts into your airways, and infiltrates the cells that line them.
When cells sense molecules common to pathogens and uncommon to humans, they produce proteins called cytokines. Some act like alarms, summoning and activating a diverse squad of white blood cells that go to town on the intruding viruses—swallowing and digesting them, bombarding them with destructive chemicals, and releasing yet more cytokines. Some also directly prevent viruses from reproducing (and are delightfully called interferons). These aggressive acts lead to inflammation. Redness, heat, swelling, soreness—these are all signs of the immune system working as intended.
This initial set of events is part of what’s called the innate immune system. It’s quick, occurring within minutes of the virus’s entry. It’s ancient, using components that are shared among most animals. It’s generic, acting in much the same way in everyone. And it’s broad, lashing out at anything that seems both nonhuman and dangerous, without much caring about which specific pathogen is afoot. What the innate immune system lacks in precision, it makes up for in speed. Its job is to shut down an infection as soon as possible. Failing that, it buys time for the second phase of the immune response: bringing in the specialists.
Amid all the fighting in your airways, messenger cells grab small fragments of virus and carry these to the lymph nodes, where highly specialized white blood cells—T-cells—are waiting. The T-cells are selective and preprogrammed defenders. Each is built a little differently, and comes ready-made to attack just a few of the zillion pathogens that could possibly exist. For any new virus, you probably have a T-cell somewhere that could theoretically fight it. Your body just has to find and mobilize that cell. Picture the lymph nodes as bars full of grizzled T-cell mercenaries, each of which has just one type of target they’re prepared to fight. The messenger cell bursts in with a grainy photo, showing it to each mercenary in turn, asking: Is this your guy? When a match is found, the relevant merc arms up and clones itself into an entire battalion, which marches off to the airways.
Some T-cells are killers, which blow up the infected respiratory cells in which viruses are hiding. Others are helpers, which boost the rest of the immune system. Among their beneficiaries, these helper T-cells activate the B-cells that produce antibodies—small molecules that can neutralize viruses by gumming up the structures they use to latch on to their hosts. Roughly speaking—and this will be important later—antibodies mop up the viruses that are floating around outside our cells, while T-cells kill the ones that have already worked their way inside. T-cells do demolition; antibodies do cleanup.
Both T-cells and antibodies are part of the adaptive immune system. This branch is more precise than the innate branch, but much slower: Finding and activating the right cells can take several days. It’s also long-lasting: Unlike the innate branch of the immune system, the adaptive one has memory.
After the virus is cleared, most of the mobilized T-cell and B-cell forces stand down and die off. But a small fraction remain on retainer—veterans of the COVID-19 war of 2020, bunkered within your organs and patrolling your bloodstream. This is the third and final phase of the immune response: Keep a few of the specialists on tap. If the same virus attacks again, these “memory cells” can spring into action and launch the adaptive branch of the immune system without the usual days-long delay. Memory is the basis of immunity as we colloquially know it—a lasting defense against whatever has previously ailed us.
…The new coronavirus seems to rely on early stealth, somehow delaying the launch of the innate immune system, and inhibiting the production of interferons—those molecules that initially block viral replication.”