The subject of the article might implicitly suggest that the days of the US being a science superpower are numbered given the emergence of China as a credible contender. Whilst that might be premature and debatable, the historical context of the US getting to this position is worth understanding. The author, Steve Blank’s timing of this piece can be attributed to the recent actions by the Trump administration on US universities and government funding to them, the central element of the article.
First, the author lays out the conditions under which the US took over the baton from Britain as the leading science superpower – World War II and the science advisors the leaders of the two countries had at that time:
“When Winston Churchill became the British prime minister in 1940, he had at his side his science advisor, Professor Frederick Lindemann, his friend for 20 years. Lindemann headed up the physics department at Oxford and was the director of the Oxford Clarendon Laboratory. Already at war with Germany, Britain’s wartime priorities focused on defense and intelligence technology projects, e.g. weapons that used electronics, radar, physics, etc. – a radar-based air defense network called Chain Home, airborne radar on night fighters, and plans for a nuclear weapons program – the MAUD Committee which started the British nuclear weapons program code-named Tube Alloys. And their codebreaking organization at Bletchley Park was starting to read secret German messages – the Enigma – using the earliest computers ever built.
…Under Churchill, Professor Lindemann influenced which projects received funding and which were sidelined. Lindemann’s WWI experience as a researcher and test pilot on the staff of the Royal Aircraft Factory at Farnborough gave him confidence in the competence of British military research and development labs. His top-down, centralized approach with weapons development primarily in government research labs shaped British innovation during WW II – and led to its demise post-war.”
In contrast, the Americans took a different approach:
“Unlike Britain, the U.S. lacked a science advisor. It wasn’t until June 1940, that Vannevar Bush, ex-MIT dean of engineering, told President Franklin Roosevelt that World War II would be the first war won or lost on the basis of advanced technology electronics, radar, physics problems, etc.
Unlike Lindemann, Bush had a 20-year-long contentious history with the U.S. Navy and a dim view of government-led R&D. Bush contended that the government research labs were slow and second rate. He convinced the President that while the Army and Navy ought to be in charge of making conventional weapons – planes, ships, tanks, etc. — scientists from academia could develop better advanced technology weapons and deliver them faster than Army and Navy research labs. And he argued the only way the scientists could be productive was if they worked in a university setting in civilian-run weapons labs run by university professors. To the surprise of the Army and Navy Service chiefs, Roosevelt agreed to let Bush build exactly that organization to coordinate and fund all advanced weapons research.
In 1941, Bush upped the game by convincing the President that in addition to research, development, acquisition and deployment of these weapons also ought to be done by professors in universities. There they would be tasked to develop military weapons systems and solve military problems to defeat Germany and Japan. (The weapons were then manufactured in volume by U.S. corporations Western Electric, GE, RCA, Dupont, Monsanto, Kodak, Zenith, Westinghouse, Remington Rand and Sylvania.) To do this Bush created the Office of Scientific Research and Development (OSR&D).”
Many of us will relate to this from the award-winning movie, Oppenheimer when leading physicists from the academia were invited to help build the atom bomb:
“…What changed U.S. universities, and the world forever, was government money. Lots of it. Prior to WWII most advanced technology research in the U.S. was done in corporate innovation labs (GE, AT&T, Dupont, RCA, Westinghouse, NCR, Monsanto, Kodak, IBM, et al.) Universities had no government funding (except for agriculture) for research. Academic research had been funded by non-profits, mostly the Rockefeller and Carnegie foundations and industry. Now, for the first time, U.S. universities were getting more money than they had ever seen. Between 1941 and 1945, OSR&D gave $9 billion (in 2025 dollars) to the top U.S. research universities. This made universities full partners in wartime research, not just talent pools for government projects as was the case in Britain.”
Whilst Britain slid back post war, the American model only went from strength to strength:
“Meanwhile in the U.S. universities and companies realized that the wartime government funding for research had been an amazing accelerator for science, engineering, and medicine. Everyone, including Congress, agreed that the U.S. government should continue to play a large role in continuing it. In 1945, Vannevar Bush published a report “Science, The Endless Frontier” advocating for government funding of basic research in universities, colleges, and research institutes. Congress argued on how to best organize federal support of science.
…By the end of the war, OSR&D funding had taken technologies that had been just research papers or considered impossible to build at scale and made them commercially viable – computers, rockets, radar, Teflon, synthetic fibers, nuclear power, etc. Innovation clusters formed around universities like MIT and Harvard which had received large amounts of OSR&D funding (MIT’s Radiation Lab or “Rad Lab” employed 3,500 civilians during WWII and developed and built 100 radar systems deployed in theater,) or around professors who ran one of the OSR&D divisions – like Fred Terman at Stanford.”
For those interested, Blank provides plenty of links to background material in the article for double clicking.
If you want to read our other published material, please visit https://marcellus.in/blog/
Note: The above material is neither investment research, nor financial advice. Marcellus does not seek payment for or business from this publication in any shape or form. The information provided is intended for educational purposes only. Marcellus Investment Managers is regulated by the Securities and Exchange Board of India (SEBI) and is also an FME (Non-Retail) with the International Financial Services Centres Authority (IFSCA) as a provider of Portfolio Management Services. Additionally, Marcellus is also registered with US Securities and Exchange Commission (“US SEC”) as an Investment Advisor.